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ABSTRACT 
In this paper, a novel data-driven approach to improving the performance of wastewater management 
and pumping system is proposed, in which necessary data are obtained by data mining methods as the 
input parameters of optimization problem to be solved in nonlinear programming environment. In this 
regard, first, CART classifier decision tree is used to classify the operation mode, or the number of 
active pumps, based on the historical data of Austin-Texas infrastructure. Then, SOM is utilized to 
classify the customers and select the most important features that might have effect on the consumption 
pattern. Further, the extracted features is fed to Levenberg-Marquardt (LM) neural network that 
predicts the required outflow rate of the period for each operation mode classified by CART. The 
results showed that the prediction F-measures were measured 90%, 88%, and 84% for each operation 
mode 1, 2, and 3, respectively. Finally, the nonlinear optimization problem is developed based on the 
data and features extracted from the previous steps solved by artificial immune algorithm. The results 
of the optimization model were compared with the observed data, showing that the proposed model 
could save up to 2%-8% of the outflow rate and wastewater, regarded as a significant improvement in 
the performance of pumping system. 
 
KEYWORDS: Network Pressure Management; Data mining; Neural network; Nonlinear programming; 
Artificial Immune network. 
 

1. Introduction1 
Nowadays, water scarcity is gaining increasing 
importance for countries, especially the 
developing ones, due to global warming and 
droughts (IWMI 2009). Under such conditions, 
crucial management problems such as wastewater 
and resource management may arise. In recent 
decades, water resources have been exhaustively 
consumed for agricultural, irrigational, industrial, 
urban, and residential purposes. This multiplicity 
of demands for water complicates the wastewater 
management more than ever. Therefore, the need 
to propose a comprehensive approach to tackle 
the problem of multiple sources and coming up 
with a robust optimal solution is felt. 
Furthermore, recognizing the consumers’ 
consumption patterns become more complex than 
ever since their different behaviors vary from 
region to region and period to period. A majority 
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of consumption databases comprise numerous 
features that would confuse managers with 
making decisions about what features greatly 
affect consumption that must be taken under 
control. In this respect, a data-driven and feature-
based framework is beneficial to select the key 
features of consumption and control them in 
order to optimize the wastewater. 
Several researches have been conducted to 
examine the multi-objective environment of 
wastewater management and pumping systems. 
Lopez et al. proposed Evolutionary Algorithms 
(AEs) to introduce the multi-objective approach 
to minimizing the pumping cost and maximizing 
the stop time [1], and Kernan et al. (2017) studied 
the Genetic Algorithms (GA) used for optimizing 
and scheduling the pumping configuration along 
with EPANET hydraulic solver [2]. In addition, 
Torregrossa et al. (2019) compared Genetic 
Algorithm (GA) with Particle Swarm 
Optimization (PSO) to activate dynamic pump 
and minimize the costs [3].  
Furthermore, optimization process in this area 
requires convex Mixed-Integer Nonlinear 
Programming (MINLP). Zhuan et al. (2013) 
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studied the Evolutionary Algorithms and 
different variants of dynamic programming [4]. 
Guo et al. investigated simulation models using 
Particle Swarm Optimization (PSO) to optimize 
water demand supply in different locations by 
means of effective reservoir operations [5]. 
Karamouz et al. suggested an implicit stochastic 
method for optimal operation function using 
historical time series to statistically obtain the 
optimal decision rules [6]. 
Wang et al. utilized artificial neural network to 
tackle the problems caused by the nonlinear and 
complex nature of the relationships among the 
independent features of water demand [7]. Mehta 
and Jain employed Fuzzy technology to extract 
the reservoir operation rules and compared the 
performances of several Fuzzy approaches [8]. 
However, there are some common characteristics 
and limitation in all of the abovementioned 
studies: 

1. They were designed only for fixed speeds 
in pumping systems; therefore, there 
would not be any real-time controlling 
and optimization. 

2. They did not consider consumers’ 
features and characteristics that would 
significantly affect water demand and 
supply operation. 

3. They assumed the operational mode of 
pumping system (number of pumps) to be 
fixed or the pump activation were not 
obtained from the historical data. 

This paper aims to introduce a comprehensive 
approach to compensate the limitations and 
constraints of previous studies in several ways. 
First, the proposed approach determines the 
operational modes of pumping system 
infrastructure and historical data of demands. 
Therefore, it ensures more accuracy in demand 
satisfaction. Second, this model is capable of 
extracting the most important features that have 
significant effects on consumers’ demands. 
Among these features is location which affects 
the consumers’ habits and consumption. Finally, 
it is a developed approach to optimization in real 
time since it considers small windows of time and 
the optimization is dynamically done over a 
specific time period at various pump speeds.  
The rest of the present paper is structured as 
follows: Section 2 describes the dataset and 
pumping system infrastructure of Austin-Texas. 

Section 3 discusses the data mining process for 
three different methods, namely CART 
classification diagram for operation mode 
(number of active pumps), Self-Organized Map 
(SOM) for consumers’ clustering and feature 
extraction, and L-M neural network for outflow 
rate prediction. Section 4 presents the 
optimization model which is solved by means of 
artificial immune network (aiNet) algorithm.   
 

2. Methodology 
2.1. Dataset 
The dataset used in this study consists of several 
tables including Austin-Texas consumers’ data, 
pumping system data, and Energy consumption 
data. Each table includes water consumption data 
according to the characteristics of consumers and 
pumping system. The whole dataset includes the 
data obtained over the years from 2013 to 2019; 
however, in this paper, the analysis is limited to 
the 4th quarter of the year 2017.  
(https://doi.org/10.26000/007.000004) 
 
2.2. Pumping system and wastewater 

management process 
Wastewater management process can be divided 
into different phases. Yoo et.al (2001) [9] 
categorized the important phases as pre-
treatment, primary treatment, secondary 
treatment (biological), tertiary treatment, 
disinfection, sludge treatment, and odor control.  
This paper primarily emphasized on the 
intermediate wastewater and pumping 
management which can be put between primary 
and secondary phases. The primary phase is the 
process of solid material separation using 
lamellar and the secondary phase is the process of 
biological filtering.  
A majority of previous studies on wastewater 
optimization introduced an optimization approach 
applied to several pump settings. However, in 
this paper, attempts were made to use the 
determined numbers of pumps supported by 
Pressure Reducing Valve (PRV). Hence the 
speed and frequency of the pumps are regarded as 
decision variables, and the requirements 
including the output of the data mining phase is 
fed to the PRV setting. Figure.1 shows the pump 
and PRV setting provided for Austin-Texas water 
consumers.
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Fig. 1. Pumping system & wastewater infrastructure 

 
2.3. PRV setting 
Generally, PRV is installed to reduce the water 
pressure or outflow rate, while there are not 
excessive demands. However, this existing 
equipment is not intelligent enough to control the 
demands (consumers’ requirements) and 
infrastructure facilities at the same time. 
Therefore, significant water leakage and pipe 
breaks are observed due to high outflow rate in 
off-peak and low flow rates in peak demand.  
The proposed approach is capable to be set on 
PRVs and easily measures the outflow rate, 
optimizes it, and reduces the pressure according 
to the estimated outflow rate. Therefore, it works 
totally automatic and intelligent, significantly 
manages wastewater, decreases pipe breaks and 
water leakage, and comprehensively satisfies the 
consumers’ demands at any time. 
 
2.4. Pump scheduling: 
In order to distinguish among the operative 
pumps, idle pumps, and backup pumps, some 
instructions should be followed in pump settings. 
To this end, the recursive procedure is used to 
classify the observations set in CART. Pumping 
system data table with several characteristics in a 
certain time period was also used that comprised 
the number of active, idle, and backup pumps, 
wet well level, frequency/speed of each pump, 
and amount of Energy consumption.  
The other factor that significantly affects the 
CART diagram and node separation is influent or 
input flow rate. However, these observations are 
not available in our dataset since not all sewers 
are equipped with sensors to track the influent 
flow rate; even if they are equipped with sensor, 
the distances among the sensors and wet are not 

equal. Therefore, several studies suggested 
different formulas to estimate the influent flow 
rate. In this paper, it was assumed that the 
influent flow rate is directly affected by wet well 
level and wastewater flow rate after pumping. 
Both of these factors are available in our dataset 
and are used in estimation [10]. 
 
Inflow (t) =  Outflow(t).ΔT	+    	( 	∗	 )	       (1) 
 
where t is the current time, ΔT is the sampling 
period, ΔL is the difference between the wet well 
levels at two sampling points, and AL is the area 
of wet well level. This estimation was done to 
determine the decision parameter of CART 
diagram in Subsection 3.1. 
Therefore, pumping time must pass from the 
minimum level of wet well to the maximum level 
of wet well and can be defined as:  
 
ΔT = ( 	∗	 )

( ) ( )
                                  (2) 

 
In the rest of this paper, this time window is used 
as the sampling period and directly utilized in 
optimization problem in Section 4.  
 

3. Data Analysis 
3.1. CART classification for operation 
mode: 
According to these observations, CART diagram 
classification is constructed using Gini 
Coefficient as the index of impurity. Figure 2 
shows the classification of the rules.  
Index of impurity can be defined through the 
segmentation rule in decision tree nodes. 
Therefore, Gini Coefficient proposed by 
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Speybroeck et.al (1998) was employed and 
shown as follows [11]: 
 
Gini (n) = 1-∑ 퐼 (푗|푛)                                       (3) 
where ‘n’ is the node, Gini(n) is the Gini 
Coefficient of n, and ‘I ‘is the proportion of class 
‘j‘ in node ‘n’.  
If the Gini coefficient is available, the recursive 
procedure of segmentation of the root node 
begins.  To this end, the difference in impurity of 
the parent node and sub-nodes is calculated as 
[12]:  
 
∆i(s,n) = Gini(n)−IL[i(nL)]−IR[i(nR)]                  (4) 
 
where IL and IR are proportions of sample in left 
and right sides of the node and i(nL/R) is the 
impurity of the left and right sub-nodes. The 
nodes with the maximum value of ∆i(s,n) are 
used for segmentation in each step, and the 

recursive process is run until CART diagram is 
constructed as shown in Figure2.  
Figure 2 classifies the operation mode or number 
of active pumps in each time period based on the 
provided dataset. The system first measures the 
wet well level; if it is higher than 6m, it will 
activate the first pump with frequency “F” and 
then again, measure it to be approximately 50Hz. 
If the frequency is less than 50Hz, Pump “P1” 
will suffice in this time period, and if it is more 
than 50Hz, the second pump “P2” will be 
activated and its speed measured. If the speed is 
higher than the rated speed, the third pump “P3” 
will be activated; otherwise, “P1+P2” will 
suffice. On the contrary, if the wet well level is 
less than 6m, the inflow rate will be estimated 
using Equation 1. If the inflow rate is higher than 
230k (m3/day), Pump “P2” will be activated; 
otherwise, Pump “P1” will suffice. Of note, these 
rules in this tree are extracted from the historical 
data of the pump allocation based on the wet well 
level, pump frequency, speed, and inflow rate. 

 
Fig. 2. CART classification diagram for recognizing operation mode (M1: {P1}, M2: {P1+P2}, M3: 

{P1+P2+P3}) 
 

3.2. Feature selection and consumer’s 
classification: 
Water consumption datasets usually consist of 
numerous features that describe the consumers’ 
patterns. Hence the data system is noisy that 
lessens the accuracy of the prediction models. 
This is why selecting top independent features 
and dropping highly correlated ones are 

significant tasks which should be done prior to 
consumption prediction. 
The customers’ dataset itself classifies customers 
into 4 different categories with their specific 
features and consumption data:  

 Irrigation-Residential 
 Irrigation-multi-family 
 Residential 
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 Multi-family The observed consumption of these different 
classes for the whole year 2017 is shown in Fig. 
2.

 

 
Fig. 3. Visualization of Austin consumer’s classes in dataset 

 
However, this classification does not seem 
rational since no relationship is found between 
the residential and multi-families or Irrigation 
and non-irrigation classes. In such situations, the 
possibility of automatic classification of water 
consuming is investigated in order to achieve the 
important and effective features affecting water 
consumption. 
Kohonen Self-Organizing Maps (SOMs) was 
used in the analysis of automatic classification. 
This method helps reduce the number of 
unnecessary dimensions and indicates a 
transparent graphic of two-dimensional images. 
This is the unsupervised technique used to cluster 
customers on the basis of their effective features 
in water consumption.  

In other words, SOM functions as in the 
following: if a large number of consumers share 
similar characteristics and tend to be in the same 
map cluster, it can be concluded that the 
mentioned cluster would have significant effect 
on water consumption. Therefore, it is regarded 
as one of the significant factors on water 
consumption.  
Chrysi et al. (2015) [13] suggested the effective 
features of the input vector of SOM as shown in 
Table 1. Q shows the time period of a different 
quarter of the year, and Q3 is considered the basis 
time period due to the increasing amount of water 
consumption in summer. 

 
Tab. 1. Input vector of SOM 

Input Feature in SOM Name 
Avg of quarterly consumption QAvg 
Avg consumption over maximum consumption 
ratio 

QAvg / Qmax 

Ratio of first quarter Avg. over the third quarter Q1Avg / Q3Avg 
Ratio of second quarter Avg. over the third 
quarter 

Q2Avg / Q3Avg 

Ratio of fourth quarter Avg. over the third 
quarter 

Q4Avg / Q3Avg 

 
To obtain this analysis, SOM was implemented 
using a special clustering tool of neural network 

in Matlab and Rapidminer with the same result. 
The training parameters are: 

 
Tab. 2. Features of the self-organized map 

Size of the Map Radius for 
Neighbouring 

Learning Rate Epochs 

4 x 4 1 0.9 200 
 
After the successful NN algorithm training, SOM 
map is created and the water consumption data is 
clustered into 4 different categories according to 

Figs. 3,4, presenting the output of Rapidminer 
and Matlab, respectively. 
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Fig. 3-4. Consumers’ clustering results and hitting numbers for each cluster 

 
Figures 3 and 4 both show a 4x4 map of training 
data which clusters the water consumers in 4 
different categories. In other words, these maps 
suggest that water consumption depends on 4 
different significant features. However, there are 
consumers with other features that were not 
included in SOM due to the long radius of 
neighborhood, showing the feature’s trivial 
effect. In this case, those insignificant features 
are excluded and the dimension of the map are 
reduced to 4x4.  

The next step is to estimate the potentiality of 
consumers’ different features that are clustered in 
one of the 4 different categories based on 
similarity of characteristics. To this end, attempts 
were made to calculate the percentage of 
customers with one specific features, i.e., the 
number of individuals per household in each 
cluster. If a significant relationship is observed 
among different clusters, it can be concluded that 
the feature belongs to one of the 4 main 
categories shown in SOM. 

  

 
Fig. 5. Residential – Irrigation distribution in each cluster 

 
According to Fig. 5, approximately 44% of 
consumers are clustered in the fourth category. 
Upon a shift from the first to the fourth cluster, 
the percentages of consumers in the irrigation and 
residential category increase and decrease, 
respectively. This is an evidence that residential-
irrigation is one of the categories provided by 
SOM. An analysis of the number of people per 
household was done and positive results were 

obtained as well. In order to increase the certainty 
of this experiment, regression analysis was done 
to show the correlation of the water consumption 
and number of people per household. Therefore, 
this feature is considered as another significant 
categories of water consumer’s properties. Fig. 6 
shows the regression analysis and correlation of 
two factors. 

 

 
Fig. 6. Regression analysis of the independent variables 
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The same analysis was done considering other 
potential characteristics of consumers. However, 
it is possible to skip the details of analysis for rest 
of characteristics and draw a reliable conclusion 
with respect to most significant clusters as the 
output of SOM, incluing: 

 Number of people per household 
 Income of family 
 Residential-Irrigation 
 Number of Pumps for each unit 

 
3.3. Data-driven evaluation of pumping 
system performance: 
In this section, the performance of the pumping 
system is evaluated by developing a prediction 
model. The results obtained from CART 
classification regarding the mode of the system 
(number of active pumps) and SOM regarding 
the feature and requirement selection were used 

in order to get the desired outputs from the 
proposed model.  
First, a model was developed to estimate the 
outflow rate per household or business. Zhang et 
al. [14] compared the performance of several 
datamining algorithms such as Random Forest 
(RF), Support Vector Machine (SVM), and K 
nearest neighbor to resolve the problem of 
complex and none-linear nature of wastewater 
pumping systems and concluded that Neural 
Network (NN) outperformed others with high 
accuracy of estimation. Therefore, NN was 
utilized to estimate the outflow rate in this study. 
The variables and structure of network are given 
in the following. Table 3 lists all the parameters 
used for modeling the outflow rate. Of note, the 
total outflow rate of the district can be easily 
calculated via summation of estimated outflow 
rates per household or business. 

 
Tab. 3. Description of the parameters 

Parameters’ Names Parameter description and possible values 
NP Number of people per household or business 
FI Total family or business income 
RI Consumer type (Binary): Residential=0, Irrigation=1 
M Operation mode = number of active pumps = 1,2,3 
St,m Speed of pump ‘m’ at time ‘t’ 
Lt Wet well level at time ‘t’ 
Ot Outflow rate at time ‘t’ 

 

 
Fig. 7. LM neural network structures and input/output nodes 

 
LM algorithm, i.e., the advanced form of 
Gaussian-Newton algorithm, was chosen to train 
this network. It has the capabilities of both 
Gaussian-Newton and gradient methods. The 
structure of the proposed LM network is 
described in the following: 

1. There are 6 input nodes which are the 
outputs of the previous section analysis. 
NP, FI, and RI were selected from SOM 
and M was regarded as the operation 
mode or the number of active pumps 
from CART classification. 

2. The empirical formula was used for 
calculating the number of hidden layers: 
 

N = √푁푖 + 푁표   + a                                           (5) 
 
where ‘Ni’ is the input nodes (6), ‘No’ the output 
nodes (1), and ‘a’ the constant number. After 
several trials of changing ‘a’ and error 
calculation, the optimal number of hidden layers 
was calculated as 6.  
Now, the outflow rate should be modeled 
according to the operation modes: 
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Om1,t  = NNm1 ( Om1, t-ΔT , Sm1,t , Sm1, t-ΔT ,  Lt , L t-ΔT , 
NP, FI, RI)                                                         (6) 
 
Om2,t  = NNm2 ( Om2, t-ΔT , Sm1,t , Sm1, t-ΔT , Sm2,t , Sm2, 

t-ΔT ,  Lt , L t-ΔT , NP, FI, RI)                                (7) 
 
Om3,t  = NNm3 ( Om3, t-ΔT , Sm1,t , Sm1, t-ΔT , Sm2,t , Sm2, 

t-ΔT ,  Sm3,t , Sm3, t-ΔT ,  Lt , L t-ΔT , NP, FI, RI)       (8) 
 
where Omi,t is the estimated outflow rate in the 
operation mode ‘i:1,2,3’ at time ‘t’ and NNmi is 
the LM neural network prediction model for 
outflow wastewater. The rest of the parameters 
are described in Table 3.  
In the following section, the accuracy of the 
constructed model is calculated by evaluating 
different metrics such as Mean Squared Error 

(MSE), precision, recall, and F1 through the 
confusion matrix.  
 

3. Results 
The model in this paper is fitted to the R package 
and the results of the confusion matrix are 
directly derived from the R code after fitting. 
Therefore, the code is run 3 times for 3 different 
operation modes and each time, the metrics are 
obtained. Table 4 shows the results of the matrix 
for each operation mode. Of note, F1 score is 
calculated using the following expression, 
demonstrating the performance of our mode: 
 
F1 = 2 * 

	 	
                                      (9)

 
Tab. 4. Result of the training and test analysis of the model 

Operation Mode MSE Precision Recall F1 
M1: {P1} 0.01 92% 89% 90% 
M2: {P1+P2} 0.01 87% 88% 88% 
M3: {P1+P2+P3} 0.07 85% 82% 84% 

 
Moreover, the robustness of our approach is emphasized by plotting the ROC curve, as shown in Fig. 8.  

 
Fig. 8-9. ROC Curve of the fitted model & visualization of observed estimated points 

 
So far, based on the inputs such as pumps speed, 
wet well level, and characteristics of customers, 
customers’ requirements were predicted by 
estimating the outflow rate. However, some 
important factors of PRV are still lacking. The 
following questions should be answered. What is 
the optimal speed of the pumps at each time 
stamp? What is the maximum outflow rate to be 
fed on PRVs to prevent pipe leakage during low-
demand periods while satisfying all the 
constraints from Texas wastewater infrastructure? 
The following section discusses the optimization 
model of the proposed approach. 
 

4. Optimization Process for PRV 
Setting 

In this study, an optimization model was 
designed to maximize the outflow rate while 

satisfying the requirements of consumers and 
Austin infrastructure. Thus, the objective 
function is expressed as follows: 
 
Oopt, T  = ∫ 푂(푡)		푑푡                                        (10) 
 
where Oopt is the optimal outflow rate to be set in 
PRV setting, and T is expressed as time window 
of sampling, estimated using Equation (2) in 
Subsection 2.3. 
There are 3 operation modes (i:1,2,3), and the 
equation should be discretized so that it can be 
solved. Thus, the objective function can be 
expressed as follows: 
 
Oopt = ∑ ∑ 푂	(	푚푖, 푡) 	훥푡                       (11) 
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The decision variables used in this study are 
pump speed and wet well level in each time 
window. In Austin infrastructure, the rotational 
speed can be set as the maximum grid frequency 
which is 50Hz corresponding to 3000 rpm, and 
the minimum is assumed to be 1500 rpm to 
prevent the system from overheating. Moreover, 
the wet well level changes at the time window 훥푡 
according to the following Equation: 
 
Lt+Δt = Lt +  ( ( ) ( ))	∗	                                  (12) 
 
where Ot is the estimated outflow rate at time t in 
Section 4, It is the estimated inflow rate at time t 
according to Equation 1, and AL (m2) is the 
constant area of the wet well level. Moreover, the 
wet well level should always be kept between the 
allowed minimum and maximum which varies 
from time to time; however,  at this specific time 
window, it is assumed constant. 
Moreover, PRV requires a momentum parameter 
which will be directly affected by the rotational 
speed changes over time. Thus, the PRV 
momentum is expressed as: 
 
τ(PRV) = ( )

( )
 * Δt                                      (13) 

 
In order to decrease the number of constraints 
and complexity of the problem, the wet well level 
constraint is integrated in the objective function 
with Lagrangian Coefficient (λ). Therefore, the 
model for outflow optimization is formulated as: 
 
Min Oopt = ∑ ∑ 푂	(	푚푖, 푡) 	훥푡                (14) 
 
St. 
Om1,t = NNm1 ( Om1, t-ΔT , Sm1,t , Sm1, t-ΔT ,  Lt , L t-ΔT , 
NP, FI, RI) + λ(max{0, Lt+Δt – Lmax}) 
Om2,t  = NNm2 ( Om2, t-ΔT , Sm1,t , Sm1, t-ΔT , Sm2,t , Sm2, 

t-ΔT ,  Lt , L t-ΔT , NP, FI, RI) + λ(max{0, Lt+Δt – 
Lmax}) 
Om3,t  = NNm3 ( Om3, t-ΔT , Sm1,t , Sm1, t-ΔT , Sm2,t , Sm2, 

t-ΔT ,  Sm3,t , Sm3, t-ΔT ,  Lt , L t-ΔT , NP, FI, RI) + 
λ(max{0, Lt+Δt – Lmax}) 
Lt+Δt = Lt +  

( ( ) ( ))	∗	
 

τ(PRV) = ( )
( )

 * Δt 
1500 < St < 3000 
Lmin < Lt < Lmax  
 
4.1. Problem solving with aiNet 
In order to solve the optimization model 
proposed in the previous section, several options 
with respect to different algorithms are available. 

The model is complex and nonlinear which 
makes the process more challenging. However, 
several studies have proposed different 
algorithms for solving such a problem. Most of 
such frequent studies are in the field of 
evolutionary algorithms or artificial immune 
systems.  
A method of Mixed-Integer Non-Linear Problem 
(MINLP) was proposed by Oreste et al. (2019) 
[10], which would solve the problem of having 
both linear and nonlinear constraints in the 
optimization model. In their studies, given that 
time window is quite large, a Mixed-Integer Non-
Linear Programming is required for a NP-hard 
problem.  
Genetic algorithm has been suggested in several 
studies for optimization of nonlinear problems in 
water distribution systems, and it has been 
concluded that the GA would yield a low-cost 
solution [2,18]. 
Nanas et al. (2007) compared the performance of 
evolutionary algorithms and artificial immune 
systems methods and suggested the superiority of 
artificial immune network for this kind of 
problem [19]. Therefore, the optimization 
problem solving was applied using artificial 
immune network (aiNet) since it was more robust 
and required lower computational cost than other 
methods.  
 
4.2. Data points and optimization steps for 
aiNet 
In this section, 3 different scenarios as the three 
observed operation modes in Section 2 are 
elaborated. Then, a time window from each 
operation mode test dataset should be set the 
duration of each of which is one hour. Each time 
window consists of 11 data points, and the 
optimization result in each step is used as the 
input of next step.   
In the first step, the population with size N is 
randomly generated, and the following steps are 
iterated until the stop criterion is met. The full 
procedure of this algorithm was described by 
Xian et al. (2007) [21], and the researcher 
customized their process in this paper to solve the 
optimization problem: 

1. Create a fixed size clone for each parent; 
2. Calculate the fitness of each parent in the 

clone; 
3. Compare the antibody of the parents with 

that of the highest fitness in each clone; 
4. Replace the parent with the highest 

antibody value in the clone; 
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5. Search for the local optimal value, until 
the difference between 2 average fitness 
value of a clone is less than 0.02 (stop 
criterion). 

Table 5 shows the summary of the optimization 
results of each scenario or operation mode, along 
with the outflow rates in the optimization process 
for the selected time windows and data points. 

 
Tab. 5. Results of optimization 

Operation Mode Calculated outflow 
rate 

M3/day 

Observed outflow rate 
in test dataset 

Result of saving in 
optimization 

M1 227,000 221,498 0.02 
M2 359,000 329,659 0.08 
M3 573,000 570,390 0 

 
5. Conclusion 

The present study proposes a data-driven and 
feature-based framework and aims to optimize 
the wastewater management and pumping system 
performance by minimizing the outflow rate to 
prevent the system from pipe leakage and to 
satisfy consumers’ demands while it is adjusted 
to PRVs. Numerous studies have been conducted 
to improve the performance. However, they did 
not take into consideration the confusing nature 
of wastewater datasets due to the increasing 
number of features and sources provided for 
consumers. Therefore, this study considered 
some pre-processing over the dataset obtained 
from the result of our data analysis to increase the 
accuracy of the proposed optimization model and 
decrease its complexities. In the present study, 
the infrastructure data of Austin-Texas pumping 
system in 2017 was utilized to construct the 
CART classification diagram, helping  the 
decision makers to specify the optimum number 
of pumps in each period according to the wet 
well level, inflow rate, frequency, and speed of 
the pumps; This process is defined as operation 
mode. Then, SOM is used to select the most 
significant features of the consumer’s data with 
respect to the consumption pattern. Therefore, 
only the output features of the map are used to 
reach the next step and rest of the features in our 
dataset are neglected. For the next step, the 
extracted features of SOM are used as the input 
of Neural network to predict the outflow rate of 
the pumping system. This estimation shows the 
required amount of consumption in each time 
period. The F-measures of this estimation are 
90%, 88%, and 84% for operation mode 1, 2, and 
3 respectively, which shows the robustness of our 
prediction method. However, in order to make 
the pumping system intelligent, the optimal 
amount of outflow rate should be set on the 
PRVs, and this number is regarded as the solution 
of the nonlinear optimization problem. The 
decision variables include wet well level and 

speed of the pumps, and the problem is solved 
with artificial immune network algorithm. The 
optimization process leads to 2% to 8% more 
saving in wastewater and outflow rate in 
comparison with the observed rate; and it 
indicates that the performance of pumping system 
is directly affected by the operation mode, feature 
selection of consumers, and outflow rate 
estimation model.  
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